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Abstract. In this paper, we will construct a canonical resolution of double
coverings of foliated surfaces and provide a concrete formula of c21, c2, χ of the
double foliated surface. During the computation, we also derive a theorem
about the Zariski decomposition of an adjoint divisor of type KF +∆, which
generalizes McQuillan’s theorem in the case that ∆ = 0. Then we prove the
slope of double foliated surfaces of general type is at least 4 if the original
foliation satisfies c21 ≥ 4χ and the ramification divisor avoids the set of saddle-
nodes. In the last section, we will give some examples of transcendental double
foliated surfaces with slope 12

7
.

1. Introduction

A foliated surface is a pair (X,F) consisting of a smooth projective surface X
and a (holomorphic) foliation F . A holomorphic foliation F on a smooth projective
surface X can be defined by a differential equation of first order α = 0, where α is
a non-zero rational 1-form. We say F is algebraic if the different equation admits a
rational first integral, otherwise, we say F is transcendental. In 1891, Poincaré in
[15, 16, 17], studied the following problem:

Problem 1.1 (Poincaré). Is it possible to decide if a differential equation α = 0 is
algebraic ?

A similar problem was proposed by Painlevé [14], which is as follow:

Problem 1.2 (Painlevé). Is it possible to decide if a differential equation α = 0
has a rational first integral of a given genus g ?

Lins-Neto [13] showed that the genus is not an invariant of differential equations,
by constructing counterexamples.

On the other hand, several invariants of fibrations can be generalized to foliations.
For example, the minimal models (Seidenberg [18], Brunella [4]), canonical divisor
KF , pluri-canonical genera pn(F), Kodaira dimension κ(F), and numerical Kodaira
dimension ν(F) (McQuillan [11] and Mendes [9]), Chern numbers c21(F), c2(F) and
χ(F) = 1

12

(
c21(F) + c2(F)

)
(Tan [19]). For a foliation F of general type, c21(F)

and χ(F) are positive. Moreover, Tan [19] proved that F is of general type iff
c21(F) > 0. So we can define the slope of F as

λ(F) :=
c21(F)

χ(F)
.
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From the Noether’s equality, we have 0 < λ(F) ≤ 12. For an algebraic foliation F ,
i.e., a fibration, Xiao [20] proved

4− 4

g
≤ λ(F) ≤ 12.

Here the lower bound is attained only for hyerelliptic fibrations, as proved by Konno
[7]. Typically, the method of double coverings is useful for studying algebraic
surfaces of general type. For example, Gang Xiao [21] studied the hyperelliptic
fibration by considering the double covering of rational fibrations. Similarly, we
will study the double covering of a foliated surface (X,F), which is called a double
foliated surface, denoted by (Y,G).

In this paper, we will study the canonical resolution of the double covering (Y,G)
of a reduced foliated surface (X,F):

(Ỹ , G̃)

π̃

��

(Ys,Gs) //

πs

��

· · · // (Y1,G1)

π1

��

// (Y0,G0)

π0

��

(Y,G)

π

��
(X̃, F̃) (Xs,Fs)

σs // · · · // (X1,F1)
σ1 // (X0,F0) (X,F),

where the branch locus Bi of πi is a redcued even divisor, which can be written as

Bi = Bi,h +Bi,v,

with Bi,v consisting of all Fi-invariant components of Bi. To simplify, we will
assume (X,F) is minimal, meaning that F is reduced and there is no F-exceptional
curve on X. (Note that some other authors refer to such a foliated surface as
relatively minimal.) We will also provide a construction of σ := σ1 ◦ · · · ◦ σs such
that G̃ is a reduced foliation over the smooth surface Ỹ .

For the case that ν(G) ≥ 0, we will describe the Zariski decomposition of the
canonical divisor KG̃ of the double foliation G̃, specifically, KG̃ ≡ P (G̃) + N(G̃).
Note that

KG̃ = π̃∗
(
KF̃ +

1

2
B̃h

)
.

If we denote the Zariski decomposition of KF̃ + 1
2 B̃h by

KF̃ +
1

2
B̃h ≡ P (B̃h) +N(B̃h),

then we have

P (G̃) = π̃∗P (B̃h), N(G̃) = π̃∗N(B̃h).

Thus, it suffices to study the Zariski decomposition of KF̃ + 1
2 B̃h. More generally,

we will study the Zariski decomposition of a pseudo-effective divisor of type KF+∆,
where F is a reduced foliation over a smooth surface X and either ∆ = 0 or ∆ =∑l

i=1 aiCi is an effective Q-divisor such that Ci is not F-invariant and ai ∈ [ 12 , 1).
For the case where ∆ = 0, this is just the famous McQuillan Theorem ([4], Theorem
8.1).

Our goal is to compute the Chern numbers c21(G), c2(G), χ(G) of the double foli-
ation G. More precisely, we state the following theorem (Theorem 4.19).
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Theorem 1.3. If (X,F) is minimal with ν(F) ≥ 0, then

c21(G) = 2c21(F) +
3

2
KFBh + 2N2 − 2N(Bh)

2 +
∑

p∈Sl,m

T1(p),

c2(G) = 2c2(F)− 2N2 + 2N(Bh)
2 − 3

2
s(B) +

∑
p∈Sl,m

T2(p)− ℓ(G̃),

χ(G) = 2χ(F) +
1

8
KFBh − 1

8
s(B) +

∑
p∈Sl,m

1

12
(T1(p) + T2(p))−

1

12
ℓ(G̃).

where ℓ(G̃) is the number of G̃-exceptional curves containing saddle-nodes.
As a consequence, we have the following claim (Theorem 4.31).

Theorem 1.4. If c21(F) ≥ 4χ(F) and the ramification divisor B of π misses the
set of saddle-nodes, then

c21(G) ≥ 4χ(G).
In fact, the authors of [5] have proved a special version of the theorem above. In

[5], they consider the case where (X,F) is transcendental Riccati foliated surface
(c21(F) = χ(F) = 0) and B is a normal-crossing divisor that contains no F-invariant
curves and disjoint from the singularities of F .

2. Preliminaries

2.1. Classification of foliated surfaces. By κ(F) and ν(F), we can classify the
foliations, which is due to the work of several authors: Miyaoka[12], McQuillan[10],
Mendes[9], and Brunella[3]. See [4] for more details.

Table 1. Classification of foliations.

κ(F) Algebraic foliations Transcendental foliations
−∞ g = 0, (ν(F) = −∞) Hilbert modular foliations (ν(F) = 1)

0 g = 1, isotrivial Foliations induced by a holomorphic vector
field (up to a group action)

1
g = 1, non-isotrivial;

g ≥ 2, isotrivial
Riccati foliations or
Turbulent foliations

2 g ≥ 2, non-isotrivial Foliations of general type

Here note that if κ(F) ≥ 0, then κ(F) = ν(F) and κ(F) < 2 if and only if
c21(F) = 0.

2.2. Chern numbers of foliations. For a given complex number a, we define

β(a) :=


gcd(m,n)2

mn
, if a = m

n ∈ Q− {0}
0, others.

For a reduced singularity p of F , we define
βp(F) := β(−λp),

χp(F) := − 1

12
(BB(F , p) +mp(F)− βp(F)) ,

where BBp(F) is the Baum-Bott index of F at p (see [4], Ch.3, Sec.1). In particular,
if λp ̸= 0, then

χp(F) =
1

12

(
λp +

1

λp
− βp(F)

)
− 1

4
.
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Definition 2.1 (Tan). Suppose (X,F) is a minimal foliated surface. If ν(F) ≥ 0,
we define the following three Chern numbers:

c21(F) = K2
F +

∑
p∈N

βp(F),

c2(F) =
∑
p ̸∈N

βp(F),(2.1)

χ(F) = χ(OX) +
1

4
KF ·NF +

∑
p

χp(F),

where N is the negative part of the pseudo-effective divisor KF
num
= P + N . If

ν(F) = 0, then we define c21(F) = c2(F) = χ(F) = 0.

Tan proved the following properties in [19]:

Proposition 2.2. Suppose (X,F) is a minimal foliated surface. Then we have
(1) c21(F), c2(F), χ(F) are non-negative rational numbers.
(2) c21(F), c2(F), χ(F) are birational invariants.
(3) If KF has a Zariski decomposition with positive part P , then c21(F) = P 2.
(4) (Noether’s equality) c21(F) + c2(F) = 12χ(F).
(5) If F is birationally equivalent to a fibration f : X −→ C, then

c21(F) = κ(f), c2(F) = δ(f), χ(F) = λ(f),

where κ(f), δ(f), λ(f) are modular invariants of f .

By the formulas above, we can define the Chern numbers of any foliated surface
(X,F) by its minimal model. More precisely, if (X ′,F ′) is the minimal model of
(X,F), then we define the Chern numbers of F as

c21(F) := c21(F ′), c2(F) := c2(F ′), χ(F) := χ(F ′).

Definition 2.3. For any redcued foliated surface (X,F), we define

(2.2) ℓ(F) := K2
F +

∑
p∈X

βp(F)− 12χ(F).

Lemma 2.4. ℓ(F) ≥ 0. In particular, ℓ(F) = 0 if and only if there is no F-
exceptional curve which is the strong separatrix of a saddle-node.

Proof. Let (X ′,F ′) be the minimal model of (X,F) with σ : (X,F) −→ (X ′,F ′).
By the Noether formula, we have

χ(F) = χ(F ′) =
1

12

K2
F ′ +

∑
p∈X′

βp(F ′)

 .

Then we can see ℓ(F) denote the number of the exceptional curves in σ, which are
the strong separatrix of saddle-nodes. Next is clear. □

2.3. Let (X,F) be a foliated surface. Consider a blowing-up σ : X ′ → X centered
at a point p ∈ X with an exceptional curve E ⊆ X ′. One can get a foliation
F ′ = σ∗F on Y ′ as a pulling-back of F . It is well-known that

KF ′ = σ∗KF + (1− l(p))E,

where l(p) is the order of p.
Let R be a reduced curve in X containing no F-invariant component, and let νp

be the multiplicity of R at p. We have
σ∗R = R′ + νpE,
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where R′ is the strict transform of R under σ. Let p1, . . . , ps be the intersections
of R′ and E. By straightforwards computation, one has

tang(F , R, p) = νp(νp + l(p)− 1) +

s∑
i=1

tang(F ′, R′, pi),(2.3)

where tang(F , R, p) is abbreviated as tp.
Obviously, if νp ≥ 2 or νp = l(p) = 1, then tang(F , R, p) > tang(F ′, R′, pi) for

each pi. In the case where νp = 1 and l(p) = 0, we can see s = 1 and tp = tp1
. If

tp > 0, then νp1 = l(q1) = 1. Therefore, we can iterate this blowing-up procedure
and stop at some moment when either

i) νp = 0 or
ii) νp = 1 and l(p) = tp = 0,

for any point p. More precisely, we have the following lemma:

Lemma 2.5. There is a bimeromorphic morphism σ : X̃ → X satisfying that the
pulling back foliation F̃ = ρ∗F of F is reduced and the strict transform R̃ of R is
a smooth curve transverse to F̃ .

3. The Zariski decomposition of KF +∆

Let F be a reduced foliation on a smooth surface X. Let ∆ = 0 or ∆ =
l∑

i=1

aiCi

be an effective Q-divisor on X, where Ci’s are irreducible curves and 1
2 ≤ ai ≤ 1 for

each i. We assume that each Ci is not F-invariant and KF +∆ is pseudo-effective
with the Zariski decomposition
(3.1) KF +∆ ≡ P (∆) +N(∆).

In particular, if ν(F) ≥ 0, i.e., KF is pseudo-effective, then KF +∆ is also pseudo-
effective obviously.

Our main goal in this section is to describe the construction of the negative part
N(∆) of the adjoint canonical divisor KF +∆.

3.1. (∆,F)-chains. Let ∆ be as above. A (∆,F)-chain Θ is an F-chain satisfying
that ∆Γ < 1 (resp., ∆Γ′ = 0) for its first component Γ (resp., any other component
Γ′). For convenience, we say θ := ∆Γ is the multiplicity of Θ w.r.t. ∆. Θ is said to
be maximal if it cannot be contained in any other (∆,F)-chain. Any (∆,F)-chain
is clearly contained in a maximal one and two maximal (∆,F)-chains are disjoint
(see [4], p.97).

Let Θ = Γ1 + · · · + Γr be a (∆,F)-chain with the first component Γ1 and the
multiplicity θ := ∆Γ1 w.r.t. ∆.

One can find a unique effective Q-divisor M(Θ) =
r∑

i=1

γiΓi supported on Θ such

that
M(Θ)Γ1 = −1, M(Θ)Γi = 0 for i > 1.

By a straightforwards computation, one can find that γi =
λi

n for
n = [e1, · · · , er] > λ1 = [e2, · · · , er] > · · · > λr = 1,

where ei = −Γ2
i and [e1, · · · , er] denote the determinant of the intersection matrix

(−Γi · Γj)1≤i,j≤r. So γr ≤ 1
2 and γr = 1

2 iff i = 1 and Γ2
1 = −2. In particular, for

any irreducible F-invariant curve C meeting transversely with Θ (C ̸= Γi for all
i’s), one has

M(Θ)C = γrCΓr = γr ≤ 1

2
.(3.2)

Moreover, one has
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Lemma 3.1 ([19]). M(Θ)2 = −
∑
p∈Θ

βp(F).

From a straightforwards computation one has

Lemma 3.2. For each irreducible component Ci of ∆, we have

θM(Θ)Ci = aiM(Θ)Ci ≥
1

2
M(Θ)Ci.

In particular, θ = ai whenever CiΓ1 > 0.

If ν(F) ≥ 0 and KF ≡ P +N is the Zariski decomposition of KF , then we write
N = M + Z where the support of M is contained in supp(Θ) and Z contains no
component of Θ.

Lemma 3.3. For any irreducible component of M(Θ), we have MΓ ≤ M(Θ))Γ.
Therefore M −M(Θ) ≥ 0.

Proof. Firstly, we claim that each component of Θ lies in the support of N . Since
KFΓ1 = −1, Γ1N < 0. So it is a component of N . Suppose that Γ1, . . . ,Γi−1 are
the components of N and Γi is outside of the support of N . Since Γi−1Γi > 0,
NΓi > 0. Hence KFΓ > 0, a contradiction. So supp(Θ) ⊆ supp(N).

For any i, one has

(M −M(Θ))Γi ≤ (N −M(Θ))Γi = KFΓi −M(Θ)Γi = 0.

Hence M −M(Θ) ≥ 0. □

3.2. The Zariski decomposition of KF +∆.

Definition 3.4. We say E is (∆,F)-exceptional if it is an F-exceptional curve
satisfying (KF +∆red)E ≤ 0. In particular, for the case that ν(F) ≥ 0, we say E
is (∆,F)-exceptional of type H-J if E is an (∆,F)-exceptional curve contained in
N .

Lemma 3.5. Suppose Θ = Γ1 + · · ·+ Γr is a (∆,F)-chain. Then

N(∆)− (1− θ)M(Θ) ≥ 0.

Proof. Since (KF +∆)Γ1 = −1+θ < 0, we can see Γ1 ∈ Supp (N(∆)) clearly. Now
we assume Γ1, · · · ,Γk ∈ Supp (N(∆)) (k ≤ r). Let Θ′ = Γ1 + · · ·+ Γk. So

[N(∆)− (1− θ)M(Θ′)] Γj = 0,

for any j = 1, · · · , k. Then we obtain N(∆)− (1− θ)M(Θ′) ≥ 0.
If k = r, we are done. Next we assume k < r and we will show Γk+1 ∈

Supp (N(∆)). If Γk+1 ̸∈ Supp (N(∆)), then

(KF +∆)Γk+1 = P (∆)Γk+1 +N(∆)Γr+1 ≥ (1− θ)M(Θ′)Γk+1 > 0.

This is a contradiction with the fact that (KF +∆)Γk+1 = 0. So we are done. □

Theorem 3.6. Suppose F is a reduced foliation on a smooth surface X with

ν(F) ≥ 0. Let ∆ =
l∑

i=1

aiCi be as above. Then KF +∆ is pseudo-effective with the

Zariski decomposition
KF +∆ ≡ P (∆) +N(∆),

where P (∆) (resp. N(∆)) denote the positive (negative) part. If there is no (∆,F)-
exceptional curve of type H-J on X, then Supp(N(∆)) is a disjoint union of maximal
(∆,F)-chains.
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More precisely, if {Θ1, · · · ,Θs} is the set of all maximal (∆,F)-chains over X
and θ1, . . . , θs are their multiplicities respectively. Then

N(∆) =

s∑
i=1

(1− θi)M(Θi).

Moreover, N ≥
s∑

i=1

M(Θi) ≥ N(∆).

Proof. Let S denote the set of non-F-invariant curves D contained in N(∆), and
we set

(3.3) T =
∑
D∈S

αDD, αD =

{
1, if D ̸⊂ ∆,

1− ai, if D = Ci ⊂ ∆

Note that ai ∈ [ 12 , 1], so T ≥ 0. Let {Θ′
1, · · · ,Θ′

t} be the set of all maximal
elements of (∆,F)-chains disjoint from S, where t ≤ r and we assume Θ′

i ⊂ Θi for
i = 1, · · · , t. Let

V =

t∑
i=1

(1− θi)M(Θ′
i).

Note that
Supp(V ) = S \S0, S0 = {Ci ⊂ ∆ | ai = 1},

where S0 is disjoint from any (∆,F)-chain clearly. This implies Θ ∩ S = ∅ iff
ΘT = 0, for any (∆,F)-chain Θ. Thus if T = 0, then t = s, Θ′

i = Θi, and so
V =

s∑
i=1

(1− θi)M(Θi). By the lemma 3.5, N(∆)− V ≥ 0. Then it suffices to show

that M := N(∆)− V + T ≡ 0.
Firstly, we claim MC ≥ 0 for any C ∈ S. Indeed, by definition of V and C, we

see V C = 0 and C2 < 0. So

MC = (KF +∆+ T )C ≥ KFC +∆C + αCC
2.

If C ̸⊂ ∆, then αC = 1 and ∆C ≥ 0. If C ⊂ ∆, say C = C1, then αC = 1− a1 and
∆C ≥ a1C

2. They both imply ∆C + αCC
2 ≥ C2, so

MC ≥ KFC + C2 = tang(F , C) ≥ 0.

Secondly, we claim that MC = 0 for any component C of V . Without loss of
generality, we assume that C is contained in Θ := Θ′

1 = Γ1 + · · ·+Γr, with θ = θ1.
By a straightforward computation, we have

(V C,∆C,KFC) =

{
(θ − 1, θ,−1), if C = Γ1,

(0, 0, 0), others.

Hence
MC = (N(∆)C − V )C = (KFC +∆C − V )C = 0.

Suppose that M > 0. One has M2 < 0 by Supp(M) ⊂ Supp(N(∆)). One can
find an irreducible component C of M satisfying MC < 0. By the above discusses,
C ̸∈ S ∪ Supp(V ). Hence C is an F-invariant component of N(∆) which is not
contained in V . We will show that such curve C does not exist and hence M = 0.

Without loss of generality, we assume that C meets transversely with (∆,F)-
chains Θ′

1, · · · ,Θ′
k at p1, · · · , pk respectively, and contains h other singularities of

F , through which there is a separatrix not contained in C + Θ′
1 + · · · + Θ′

k, says
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q1, · · · , qh. From the separatrix theorem ([4], Theorem 3.4), one can find that h ≥ 1.
By (3.2) and Z(F , C) ≥ h+ k, we can find

V C =

k∑
i=1

(1− θi)M(Θ′
i)C ≤ k

2

and
KFC = Z(F , C)− χ(C) ≥ h+ k − 2 + 2pa(C).

So
0 > MC = (KF +∆− V + T )C ≥ h+

k

2
− 2 + 2pa(C) + (∆ + T )C.

If TC > 0, then (∆+ T )C ≥ 1 by (3.3). In this case, we get MC ≥ 0, a contradic-
tion. So TC = 0. Similarly, we have pa(C) = 0, h = 1 and k ≤ 1. Thus

k

2
−∆C ≥ V C −∆C > KFC ≥ k − 1.

Therefore one of the following two cases occurs:
i) k = 0,KFC = −1 and ∆C < 1 (i.e., ∆redC ≤ 1),
ii) k = 1,KFC = 0 and ∆C < 1

2 (i.e., ∆redC = 0).
One can see that (KF + ∆red)C ≤ 0 and all singularities of F on C are non-
degenerated in both above cases. By our assumption, one has C2 < −1, otherwise,
C is a (∆,F)-exceptional curve, a contradiction. Therefore either C is a (∆,F)-
chain disjoint from S or Θ′

i + C is a (∆,F)-chain disjoint from S for some i, a
contraction with our assumptions.

Now we are done. □

Remark 3.7. If ν(F) = −∞ and KF +∆ is pseudo-effective, we can get a similar
result about N(∆). In particular, if ∆ = 0, then Theorem 3.6 is just the McQuillan
Theorem ([4], Theorem 8.1). By the way, in the paper [8], the author also studied
the Zariski decomposition of such adjoint divisor, by using the (KF + ∆)-MMP
method.

Corollary 3.8. Suppose ν(F) ≥ 0 and there is no (∆,F)-exceptional curve of type
H-J over X. Then for µ = min{ai}li=1,[

(1− µ)N −N(∆)
]
∆ ≥ 0.(3.4)

In particular,

(3.5)
[1
2
N −N(∆)

]
∆ ≥ 0.

Proof. Using the notations in the proof of Theorem 3.6, for any irreducible compo-
nent C of ∆, say C = C1,[

(1− µ)N −N(∆)
]
C = (1− µ)NC − (1− a1)

s∑
i=1

M(Θi)C (Lemma 3.2)

≥ (1− µ)

(
N −

s∑
i=1

M(Θi)

)
C ≥ 0. (Lemma 3.3)

□

Corollary 3.9. If ν(F) ≥ 0 and there is no (∆,F)-exceptional curve of type H-J
over X, then (

N +N(∆)
)
∆+N2 −N(∆)2 = P (∆)N ≥ 0.(3.6)
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Proof. (
N +N(∆)

)
∆+N2 −N(∆)2 = (∆+N −N(∆))(N +N(∆))

=P (∆)(N +N(∆)) = P (∆)N ≥ 0.

□
Corollary 3.10. If ν(F) ≥ 0 and there is no (∆,F)-exceptional curve of type H-J
over X, then

(2− µ)N∆+N2 −N(∆)2 ≥ 0,(3.7)
where µ = min{ai}li=1 ≥ 1

2 . In particular,
3

2
N∆+N2 −N(∆)2 ≥ 0.(3.8)

Corollary 3.11. Under the assumptions and notations in Theorem 3.6, one has

N(∆)2 = −
s∑

i=1

∑
p∈Θi

(1− θi)
2βp(F),

N(∆)∆ =

s∑
i=1

∑
p∈Θi

θi(1− θi)βp(F).

Definition 3.12 ([11], Definition I.1.5). Let (X,F ,∆) be a foliated triple and
f : X ′ → X be a proper birational morphism. For any divisor E on X ′, we define
the discrepancy of (F ,∆) along E to be

a(E,F ,∆) = ordE (KF ′ − f∗(KF +∆)) .

We say (X,F ,∆) is canonical if a(E,F ,∆) ≥ 0 for every f -exceptional divisor E
over X ′.

Let F be a redcued foliation over a smooth surface X and ∆ be as above.

Lemma 3.13. (X,F ,∆) is canonical if and only if tang(F ,∆red) = 0.

3.3. Canonical resolution of (X,∆,F). In this section, we assume (X,F) is
redcued with ν(F) ≥ 0.

A point p ∈ ∆ is called regular w.r.t. (∆,F) if ∆red and F are both non-singular
at p and tp := tang(F ,∆red, p) = 0. A non-regular point p ∈ ∆ is said to be a
wild (resp., tame) singularity of (∆,F) if νp ≥ 1 − l(p), νp > 0 (resp., l(p) = 0,
0 < νp < 1). Note that the assumption 0 < νp < 1 is equal to say mp(∆red) = 1
and p ∈ Ci for some component Ci of ∆ with ai < 1.

Consider the blowing-up σ : (X ′,F ′, E) → (X,F , p) over a non-regular point
p ∈ ∆. Recall

KF ′ +∆′ = σ∗ (KF +∆) + (1− l(p)− νp)E.

Definition 3.14. Let Γ be an irreducible component of N passing through p.
(1) Γ is called the first potential curve of (∆,F) at p if Γ∩ Sing(F) = {p} and

0 < ∆Γ = (∆Γ)p < 1.
(2) Γ is called the second potential curve of (∆,F) at p if

(i) Γ ∩ Sing(F) = {p} and 1 ≤ ∆Γ < (∆Γ)p + 1, or
(ii) Γ∩Sing(F) = {p, p′}, ∆Γ = (∆Γ)p, and Γ transversely intersects with

some maximal (∆,F)-chain Θ at p′.
Moreover, a potential curve Γ is called simple if (∆Γ)p = mp(∆).

For convenience, we let

(3.9) θp :=

{
∆Γ− (∆Γ)p, for (i),
the multiplicity of Θ w.r.t. ∆, for (ii).
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Lemma 3.15. Suppose p is a wild singularity of (∆,F), i.e., νp ≥ 1− l(p), νp > 0,
and there is no (∆,F)-exceptional curve of type H-J.

(1) There is no (∆′,F ′)-exceptional curve of type H-J.
(2) p is outside of N(∆) unless there is a first potential curve of (∆,F) at p.
(3) N(∆′) = σ∗N(∆) unless there is a simple potential curve of (∆,F) at p.

Furthermore, there is at most one simple potential curve of F at p.
(4) Let Γ be a simple potential curve of (∆,F) at p with Γ2 = −e and Γ′ be the

strict transform of Γ under σ meeting transversely with E at q. Let Θ′ be
the (∆′,F ′)-chain containing Γ′ with the multiplicity θ. We have

N(∆)2 −N(∆′)2 =

 1

e+ 1
− (1− νp)

2

e
, if Γ′ = Θ′,

(1− θ)2β(−λq), otherwise.

Here q = Γ′ ∩ E.

Proof. (1) Suppose that we have a (∆′,F ′)-exceptional curve C ′ of type H-J. If
νp + l(p) > 1,

(KF ′ +∆′
red)E ≥ (KF ′ +∆′)E > 0.

If (νp, l(p)) = (1, 0), then KF ′E = −1 and ∆′E = 1. Hence
(KF ′ +∆′

red)E > (KF ′ +∆′)E = 0.

In both cases, we have C ′ ̸= E.
Let C be the image curve of C ′ under σ. Note that C lies in N . Hence −1 =

C ′2 ≤ C2 < 0. It implies that C is a (−1)-curve not passing through p. Namely, C
is a (∆,F)-exceptional curve of type H-J, a contradiction.

(2) Assume that (νp, l(p)) = (1, 0). In this case, N(∆′) = σ∗N(∆). Suppose
that p ∈ N(∆). It lies in some (∆,F)-chain Θ with multiplicity θ. Thus p lies in
the first component of Θ and 1 ≥ θ ≥ νp = 1. So θ = 1, which is a contradiction
with the fact that θ < 1.

It’s sufficient to consider the case of νp + l(p) > 1. Suppose that some (∆,F)-
chain passes through p. If l(p) = 0, then νp > 1. So the first component Γ of this
chain passes through p and ∆Γ ≥ νp > 1, a contradiction. So l(p) = 1 and νp > 0.
It implies that Γ is a unique component of this (∆,F)-chain.

(3) It’s enough to consider the case that νp + l(p) > 1. If p occurs in the
exceptional case in (2), then one gets

N(∆)2 −N(∆′)2 = (1− νp)
2M(Γ)2 −M(Γ′)2 =

1

e+ 1
− (1− νp)

2

e
.

So N(∆′) ̸= σ∗N(∆).
In what follows, we assume that there is no first potential curve passing through

p. By (2), the pulling-backs of all (∆,F)-chains under σ are (∆′,F ′)-chains.
Let Θ′ be a maximal (∆′,F ′)-chain which is not the pulling-back of some (∆,F)-

chain. Thus Θ′E > 0. From Z(F , E) ≤ 2, there is at most another one (∆′,F ′)-
chain Θ′′ meeting with E. Suppose that Θ′′ exists. From the separatrix theorem,
Θ′ +Θ′′ +E is not contractible. One can get an F-invariant rational curve C with
C2 = 0 after contracting all contractible components of Θ′ + Θ′′ + E. Thus the
corresponding foliation of F from the contractions is generated by rational curves,
a contradiction. Therefore there is at most one such (∆′,F ′)-chain Θ′.

Let Γ′ be the last component of Θ′. So Γ′E = 1, (Θ′ − Γ′)E = 0. Obviously,
either Θ′ = Γ′ or the image of Θ′ − Γ′ under σ is a (∆,F)-chain. Let Γ be the
image curve of Γ′ under σ. If Γ occurs in N(∆), then Θ′ is a pulling-back of a
(∆,F)-chain, a contradiction. So Γ′ ̸∈ N(∆′).

(4) It’s from a straightforwards computation. □
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Lemma 3.16. Suppose p is a tame singularity of (∆,F) and there is no (∆,F)-
exceptional curve of type H-J.

(1) E is the only (∆′,F ′)-exceptional curve of type H-J and p′ := E ∩∆′ is a
wild singularity of (∆′,F ′) with l(p′) = 1 and mp(∆

′
red) = 1.

(2) After a blow-up σ′ : (X ′′,F ′′, E′) → (X ′,F ′, p′), there is no (∆′′,F ′′)-
exceptional curve of type H-J.

Corollary 3.17. For each non-regular point p ∈ (X,F ,∆), we have

N(∆)2 −N(∆′)2

=


1

e+1 − (1−νp)
2

e , if p lies on a first potential curve,
(1− θ)2β(−λq), if p lies on a simple second potential curve with l(p) = 1,
(1− νp)

2, if p is tame,
0, others.

In particular, 0 ≤ N(∆)2 −N(∆′)2 < 1.

In what follows, we assume that there is no (∆,F)-exceptional curve of type H-J
on (X,F). Consider the following blow-ups

(X̄, F̄) = (Xr,Fr)
σr // (Xr−1,Fr−1)

σr−1 // · · · σ1 // (X0,F0) = (X,F)

where Fi+1 = σ∗
i+1Fi is the pulling-back foliation and ∆i+1 is the strict transform

of ∆i and qi denotes the blow-up point of σi satisfying that qi’s are all non-regular
points over (∆,F). From the above discussions, we can see

(1) there is no (∆̄, F̄)-exceptional curve of type H-J over X̄,
(2) for any q ∈ X̄, tp = 0. Or say, (X̄, F̄ , ∆̄) is canonical.

For convenience, σ := σr ◦ · · · ◦ σ1 is said to be the canonical resolution of
(X,F ,∆).

4. Double covers over foliated surfaces (X,F) with ν(F) ≥ 0

Let F be a redcued foliation on a smooth surface X with ν(F) ≥ 0. Let KF ≡
P +N be the Zariski decomposition of the canonical divisor, where P (resp. N) is
the positive (resp. negative) part. Let π : Y → X be a double cover over X with
the branch locus B, which is a reduced even effective divisor. We set G := π∗F .

One can write
B = Bv +Bh,

where Bv consists of irreducible F-invariant components of B and Bh consists of
other components. For convenience, Bv (resp., Bh) is said to be the F-invariant
(resp., non-F-invariant) part of B.

It is clear that KF + 1
2Bh is pseudo-effective with the Zariski decomposition

KF +
1

2
Bh ≡ P (Bh) +N(Bh),

where P (Bh) (resp. N(Bh)) denotes the positive (resp. negative) part.

Remark 4.1. Without causing confusions, the (Bh,F)-chain means the ( 12Bh,F)-
chain. (Bh,F)-exceptional curve is similar.

4.1. Double cover with a smooth branch locus. In this section, we assume
the branch locus B is smooth and reduced.
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4.1.1. Classification of the singularities of G. Let q ∈ X be any point over X and
p = π(q) ∈ Y .

(I) Suppose p ̸∈ B. Then the π−1(p) consists of two reduced singularities of G
which are exactly the copies of q.

(II) Suppose p ∈ Bh.
(1) If p is a regular point of F , then B,F , π can be locally defined by

B = (x+ yl = 0), ω = dx,

{
x+ yl = u2,

y = v,

where p = (0, 0), l = tp + 1 ≥ 1 and B̃ := (π∗B)red = (u = 0). Then
around q, G is locally defined by

ω̃ = π∗(ω) = d(u2 − vl) = 2udu− lvl−1dv.

This implies that q is redcued iff tp ≤ 1. In particular, q is regular if
tp = 0 and λq = −1 if tp = 1.

(2) If p is a singularity of F , we can assume B,F , π are locally defined by

B = (x+ yl = 0), ω = ye1(x, y)dx+ xe2(x, y)dy,

{
x+ yl = u2,

y = v,

where l ≥ 1, e(0, 0) ̸= 0, e2(0, 0) ̸= 0 and B̃ = (u = 0). Then around
q, G is locally defined by

ω̃ = π∗ω = 2uve1du+ (u2e2 − vle2 − lvle1)dv.

This implies that q is a singularity of G, which is not reduced.
(III) Suppose p ∈ Bv. By choosing a suitable local coordinate, one can assume

that Bv (resp., π) is defined by x = 0 (resp., z2 = x) and F (resp., G) has
a 1-form ω (resp., ω̃) nearby p = (0, 0) (resp., q = (0, 0)) occurring one of
the following cases:
(1) p is a regular point of F , ω = dx and ω̃ = du.
(2) p is a non-degenerate singularity of F , ω = λydx + xdy and ω̃ =

2λydz + zdy;
(3) p is a saddle-node of F with a strong separatrix Bv and

ω = (y(1 + νxk) + xo(k))dx− xk+1dy,

ω̃ = 2(y(1 + νz2k) + z2o(k))dz − z2k+1dy;

(4) p is a saddle-node of F with a weak separatrix Bv and

ω = x(1 + νyk + o(k))dy − yk+1dx,

ω̃ = z(1 + νyk + o(k))dy − 2yk+1dz.

Therefore q is also a reduced singularity (resp. regular point) of G in (2)-(4)
(resp. (1)).

Thus we obtain the following proposition clearly.

Proposition 4.2. Under the notations above. G is a reduced foliation over a
smooth surface Y if and only if

i) the branch locus B is smooth and reduced;
ii) for any point p ∈ Bh, p ̸∈ SingF and tp := tang(F , Bh, p) ≤ 1.

Proposition 4.3. G is a reduced foliation over a smooth surface Y if
i) the branch locus B is smooth and reduced;
ii) tang(F , Bh) = 0.
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Under the assumption of Proposition 4.3, we can divide the (reduced) singular-
ities q of G into the following cases:

(A) p = π(q) is a singularity of F outside of B;
(B) p = π(q) is a singularity of F over Bv.

(B1) p is non-degenerate with CS(F , Bv, p) = − n
m satisfying gcd(m,n) = 1

and n is odd.
(B2) Other cases.

Lemma 4.4. For any point p ∈ X, we have∑
q∈π−1(p)

βq(G) =

{
1
2βp(F), if p ∈ B1,

2βp(F), others.

Moreover, ∑
q∈SingG

βq(G) =
∑

p∈SingF
2βp(F)−

∑
p∈B1

3

2
βp(F).

Theorem 4.5. Under the assumption of Proposition 4.3. If ν(F) ≥ 0, we have

c21(G) = 2c21(F) +
3

2
KFBh + 2N2 − 2N(Bh)

2,

χ(G) = 2χ(F) +
1

8
KFBh −

∑
p∈B1

1

8
βp(F) +

1

6
ℓ(F)− 1

12
ℓ(G),

c2(G) = 2c2(F)− 2N2 + 2N(Bh)
2 −

∑
p∈B1

3

2
βp(F) + 2ℓ(F)− ℓ(G).

where ℓ(G) (resp., ℓ(F)) is the number of G (resp., F)-exceptional curves containing
saddle-nodes.

Proof. It’s easy to see that KG has a Zariski decomposition KG = P (G) + N(G)
where

P (G) = π∗P (Bh), N(G) = π∗N(Bh).

Hence
c21(G) = P (G)2 = 2P (Bh)

2 = 2(KF +
1

2
Bh)

2 − 2N(Bh)
2.

Since tang(F , Bh) = KFBh +B2
h = 0 and P 2 = c21(F), we have

c21(G) = 2c21(F) +
3

2
KFBh + 2N2 − 2N(Bh)

2.

Similarly,
K2

G = 2K2
F +

3

2
KFBh.

By Lemma 4.4, we have∑
q∈SingG

βq(G) =
∑

p∈SingF
2βp(F)−

∑
p∈B1

3

2
βp(F).

From
12χ(G) = K2

G +
∑

q∈SingG
βq(G)− ℓ(G),

and the above discussions, one gets

12χ(G) = 2K2
F +

3

2
KFBh + 2

∑
p∈SingF

βp(F)− 3

2

∑
p∈B1

βp(F)− ℓ(G)

= 24χ(F) +
3

2
KFBh − 3

2

∑
p∈B1

βp(F) + 2ℓ(F)− ℓ(G).
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Finally, c2(G) is from the Noether formula 12χ(G) = c21(G) + c2(G). □

4.2. In this section, we firstly assume that there is no ( 12Bh,F)-exceptional curve
of type H-J on X. By Theorem 3.6, we have

N(Bh) =

s∑
i=1

(1− θi)M(Θi),

where {Θ1, · · · ,Θs} is the set of all maxiaml ( 12Bh,F)-chain and θi =
1
2BhΘi for

all i.

Definition 4.6. For any q ∈ SingF , we define βq(Bv) as

(4.1) βq(Bv) :=


βq(F), if q ∈ O,

4/3, if q ∈ Bv \Bh with mq(Bv) = 2, λq = 0,

0, others,

where O is set of singularities q of F contained in Bv \Bh, satisfying λq = − n
m ∈

Q−, gcd(m,n) = 1 and
(i) for mq(Bv) = 1, CS(F , Bv, q) = − n

m ∈ Q−, n is odd,
(ii) for mq(Bv) = 2, m+ n is odd.

Under the assumption of Proposition 4.3, it is clear that

(4.2) s(Bv) :=
∑

p∈SingF
βp(Bv) =

∑
p∈B1

βp(F).

Lemma 4.7. For a maximal ( 12Bh,F)-chain Θ = Γ1 + · · ·+ Γr,

(4.3)
∑

q∈Θ∩SingF
βq(Bv) =


∑
q∈Θ

βq(F), if BhΓ1 = 1 and Bh ∩Θ ∩ SingF = ∅;

0, others.

Proof. If Bh ∩Γ1 ∩ SingF ≠ ∅, then r = 1 and Θ∩ SingF = {p1} for p1 = Γ1 ∩Bh.
So ∑

q∈Θ∩SingF
βq(Bv) = βp1

(Bv) = 0.

Next we assume Bh ∩ Γ1 ∩ SingF = ∅. Consider a sequence of blow-ups σ :
(X ′,F ′) → (X,F), whose blow-up points are the set of points q ∈ Θ ∩ SingF
with mq(Bv) = 2. Let Θ′ = (σ∗Θ)red. We write Θ′ = D1 + · · · + Dl, which has
a similar construction as an F ′-chain but we permit D2

j = −1 for some j. We set
ej = −D2

j . Note that D1 = Γ̄1. Let pi = Di ∩Di+1 for i = 1, · · · , l − 1 and let pl
be the other singularities of F ′ over Dl. Then it suffices to prove

l∑
i=1

βpi
(B′

v) =


l∑

i=1

β(−λpi), if B′
hD1 = 1,

0, if B′
hD1 = 0.

(1) If B′
hD1 = 0 and D1 ̸⊂ B′

v, then D1, · · · , Dl ̸⊂ B′
v and B′

vDl = 0. So
βpi

(B′
v) = 0 for any i = 1, · · · , l.

(2) If B′
hD1 = 0 and D1 ⊂ B′

v, then D1, D3, · · · , D2[ l−1
2 ]+1 ⊂ B′

v and e2i+1 ≡ 0

(mod 2). In this case, p1, · · · , pl ∈ B′
v and mpi(B

′
v) = 1 for all i. We set

CS(F ′, B′
v, pi) = − ni

mi
for gcd(ni,mi) = 1, i = 1, · · · , l. So e1 ≡ 0 (mod 2),

n1 ≡ 0 (mod 2), and m1 = 1. By the C-S formula for D2:

CS(F ′, D2, p1) + CS(F ′, D2, p2) = D2
2 = −e2,
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we obtain
e2 =

m1

n1
+

m2

n2
.

So n2m1 = n1(n2e2 −m2). Since n1 is even and m1 is odd, we see that n2

is even. Similarly, by the C-S formula for D3, we get

e3 =
n2

m2
+

n3

m3
.

So n3m2 = e3m2m3 −m3n2. Since e3, n2 are even and m2 is odd, we see
n3 is even. By induction, we see that n1, · · · , nl are even, so βpi

(B′
v) = 0

for i = 1, · · · , l.
(3) Suppose B′

hD1 = 1.
(i) If D1 ̸⊂ B′

v, then D2, D4, · · · , D2[ l2 ]
⊂ B′

v and e2i ≡ 0 (mod 2). In
this case, p1, · · · , pl ∈ B′

v and mpi
(B′

v) = 1 for all i. Similar to the
trick on (2), we see that n1, n2, · · · , nl are odd. So βpi(B

′
v) = β(−λpi)

for i = 1, · · · , l.
(ii) If D1 ⊂ B′

v, then D1, D3, · · · , D2[ l−1
2 ]+1 ⊂ B′

v and e1 ≡ 1 (mod 2),
e2i+1 ≡ 0 (mod 2). In this case, p1, · · · , pl ∈ B′

v and mpl
(B′

v) = 1.
Similar to the trick on (2), we see that n1, n2, · · · , nl are odd. So
βpi

(B′
v) = β(−λpi

) for i = 1, · · · , l.
□

Corollary 4.8. For a maximal ( 12Bh,F)-chain Θ = Γ1 + · · ·+ Γr,∑
q∈Θ∩SingF

βq(Bv) =

{
0, if Bh ∩Θ ∩ SingF ≠ ∅
2(1− θ)M(Θ)Bh, others.

Proposition 4.9. If Bh ∩N(Bh) ∩ SingF = ∅, then s(Bv) ≥ 2N(Bh)Bh.

4.3. Singularities of (Bh,F). In this section, we assume that there is no (Bh,F)-
exceptional curve of type H-J over (X,F).

Let p ∈ Bh with tp ≥ 1. Consider a sequence of blowing-ups σ = σ1 ◦ · · ·σr :
X ′ → X:

(X ′,F ′, B′
h) = (Xr,Fr, Br,h)

σr // Xr−1

σr−1 // · · · σ1 // (X0,F0, B0,h) = (X,F , Bh),

satisfying the following conditions:
(i) Bi,h is the strict transform of Bh, i.e, Bi,h = (σ1 ◦ · · · ◦ σi)

−1
∗ Bh.

(ii) Let qi (resp. Ei) denote the blow-up point (resp. exceptional curve) of σi,
then q1 = p and qi ∈ Bi−1,h ∩ SingFi−1 ∩ (σ1 ◦ · · · ◦ σr−1)

−1(p) for i ≥ 2,
where

(iii) For any q ∈ B′
h ∩ σ−1(p), q is a regular point of F ′, i.e., l(q) = 0.

Lemma 4.10. If there is no (Bh,F)-exceptional curve of type H-J over (X,F),
then there is no (B′

h,F ′)-exceptional curve of type H-J over (X ′,F ′).

Proof. By Lemma 3.15 and Lemma 3.16. □

Definition 4.11. We call (p = q1 → q2 → · · · → qr) a singularity of type Sl,m

for l = l(p) and m = mp(Bh). We call the above sequence of blow-ups σ a bunch
of blow-ups over a singularity of type Sl,m, for l = l(p), m = mp(Bh). Note that
l ∈ {0, 1}, m ≥ 1.

We denote by r = rp the number of the blow-ups, which is called the rank of p,.

Lemma 4.12. KF ′B′
h = KFBh + 2(1− l(p))mp(Bh).
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Proposition 4.13. Suppose p ∈ (S0,m). Then N(B′
h) = σ∗N(Bh), unless

(4.4) Ē1B
′
h = E1B1,h − (E1B1,h)q2 ≤ 1.

In particular, if (4.4) holds, then we obtain a maximal (B′
h,F ′)-chain Θp contained

in σ−1(p), with the first curve Γ1 = Ē1 and θp = (B1,hE1 − (B1,hE1)q2) /2.

Proof. By Lemma 3.15 and Lemma 3.16. □

For convenience, we divide S0,m-singularities into the following 2 cases:
(Sθ

0,m) p ∈ (S0,m) with θ := θp ∈ {0, 1
2}.

(S∗
0,m) p ∈ (S0,m) with θp ≥ 1/2.

Corollary 4.14. Suppose p ∈ S0,m. We can write N(B′
h) as

(4.5) N(B′
h) = σ∗N(Bh) + (1− θp)M(Θp),

where we set M(Θp) = 0 if Θp does not exist. Moreover,

(4.6) N(Bh)
2 −N(B′

h)
2 =

{
(1− θp)

2β−
p , if p ∈ (Sθ

0,m),

0, if p ∈ (S∗
0,m).

Here β−
p :=

∑
q∈σ−1(p)∩Θp

βq(F ′).

Proof. Clear. □

Proposition 4.15. Suppose p ∈ (S1,m). Then N(B′
h) = σ∗N(Bh) unless there is

a potential curve Γ of (Bh,F) passing through p. Moreover, if N(B′
h) ̸= σ∗N(Bh),

then there is a unique maximal (B′
h,F ′)-chain, say Θp (with multiplicity θp), which

is not the pullback of a maxiaml (Bh,F)-chain.

Proof. By Lemma 3.15, (3). □

For convenience, we divide S1,m-singularities into the following 3 cases:
(SI,e

1,m) p is contained in a first potential curve Γ with l(p) = 1 and e = −Γ2.
(SII,θ

1,m ) p is contained in a second potential curve Γ with l(p) = 1 and θ := θp ∈
{0, 1

2}, where θp is as in Definition 3.14.
(S∗

1,m) Other cases in (S1,m).

4.3.1. Zariski index α(p).

Definition 4.16. We define the Zariski index α(p) of p w.r.t. σ as

(4.7) α(p) :=


3e− 1

4e(e+ 1)
(> 0), if p ∈ (SI,e

1,m),

(1− θp)
2β−

p , if p ∈ (SII,θ
1,m ) ∪ (Sθ

0,m),

0, if p ∈ (S∗
1,m) ∪ (S∗

0,m),

where β−
p :=

∑
q∈σ−1(p)∩Θp

βq(F ′).

Proposition 4.17. For p ∈ (Sl,m), we have 0 ≤ α(p) = N(Bh)
2 −N(B′

h)
2 < 1.

Proof. By Corollary 3.17 and Corollary 4.14. □
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4.3.2. Other indexes: s0(p), s(p).

Definition 4.18. For any p ∈ (Sl,m), we define

s0(p) :=
#{blow-up point in σi, which is a saddle-node.},(4.8)

s(p) :=
∑

q∈σ−1(p)

βq(B
′
v).(4.9)

4.4. Canonical resolution. Recall the double cover over a foliated surface

π : (Y,G) −→ (X,F),

where we assume F is a minimal foliation with ν(F) ≥ 0 and the (redcued) rami-
fication divisor is B = Bh +Bv. Consider the following canonical resolution

(4.10) (Ỹ , G̃)

π̃

��

(Ys,Gs)

πs

��

// (Ys−1,Gs−1)

πs−1

��

// · · · // (Y,G)

π

��
(X̃, F̃) (Xs,Fs)

σs // (Xs−1,Fs−1)
σs−1 // · · · σ1 // (X,F)

where
(1) qi (resp. Ei) denotes the blow-up point (resp. exceptional curve) of σi,
(2) σ = σ1 ◦ · · · ◦ σs is a minimal resolution such that

i) the branch locus B̃ of π̃ is smooth and reduced,
ii) tang(F̃ , B̃h) = 0.

Using the notations of Sl,m-singularities of (Bh,F), the process of σ can be
divides into the following 3 steps:

(Step 1) During σ̄ := σ1 ◦ · · · ◦ σt, we blow up the set of Sl,m-singularities over
(Bh,F). In fact, σ̄ is a canonical resolution of (X,F , 1

2Bh) (see Sec. 3.3).
(Step 2) For t + 1 ≤ i ≤ s, σi is a blow-up over qi and either qi ∈ B̄v ∩ B̄h or

qi ∈ B̄v \ B̄h with mqi(B̄v) = 2.
In fact, to compute Chern numbers of the double foliation F , we just need to

consider the step 1. More precisely, we have the following theorem.

Theorem 4.19. Under the notations above, we have
(4.11)

c21(G) = 2c21(F) +
3

2
KFBh + 2N2 − 2N(Bh)

2 +
∑

p∈Sl,m

T1(p),

c2(G) = 2c2(F)− 2N2 + 2N(Bh)
2 − 3

2
s(Bv) +

∑
p∈Sl,m

T2(p)− ℓ(G̃),

χ(G) = 2χ(F) +
1

8
KFBh − 1

8
s(Bv) +

∑
p∈Sl,m

1

12
(T1(p) + T2(p))−

1

12
ℓ(G̃).

Here

T1(p) = (1− l(p))
3m(p)− 4

2
+ 2α(p),

T2(p) = 2(1− l(p))2 − 2α(p) + 2s0(p)−
3

2
s(p).
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Proof. Note that∑
p∈(Sl,m)

T1(p) =

[
3

2
KFBh + 2N2 − 2N(Bh)

2

]
−
[
3

2
KF̄ B̄h + 2N̄2 − 2N(B̄h)

2

]
,

∑
p∈(Sl,m)

T2(p) =

[
−2N̄2 + 2N(B̄h)

2 − 3

2
s(B̄v) + 2ℓ(Fi)

]
−
[
−2N2 + 2N(Bh)

2 − 3

2
s(Bv) + 2ℓ(F)

]
.

It suffices to prove

c21(G) = 2c21(F) +
3

2
KF̄ B̄h + 2N̄2 − 2N(B̄h)

2,

c2(G) = 2c2(F)− 2N̄2 + 2N(B̄h)
2 − 3

2
s(B̄v) + 2ℓ(F̄)− ℓ(G̃).

Let T1(F̄) (resp. T2(F̄)) denote the right side of the first (resp. second) equation
above. Recall for s+1 ≤ i ≤ n, either qi ∈ B̄v∩B̄h or qi ∈ B̄v\B̄h with mqi(B̄v) = 2.

(1) If qi ∈ B̄v ∩ B̄h, then l(qi) = 0 and{
KFiBi,h = KFi−1Bi−1,h + 1, N2

i = N2
i−1 − 1, N(Bi,h)

2 = N(Bi−1,h)
2 − 1

4 ,

s(Bi,v) = s(Bi−1,v) + 1, ℓ(Fi) = ℓ(Fi−1).

(2) If qi ∈ B̄v \ B̄h with mqi(B̄v) = 2 and λp ̸= 0, then l(qi) = 1 and{
KFi

Bi,h = KFi−1
Bi−1,h, N2

i = N2
i−1, N(Bi,h)

2 = N(Bi−1,h)
2,

s(Bi,v) = s(Bi−1,v), ℓ(Fi) = ℓ(Fi−1).

(3) If qi ∈ B̄v \ B̄h with mqi(B̄v) = 2 and λp = 0, then l(qi) = 1 and{
KFi

Bi,h = KFi−1
Bi−1,h, N2

i = N2
i−1, N(Bi,h)

2 = N(Bi−1,h)
2,

s(Bi,v) = s(Bi−1,v) +
4
3 , ℓ(Fi) = ℓ(Fi−1) + 1.

(1), (2) and (3) all imply T1(Fi) = T1(Fi−1), T2(Fi) = T2(Fi−1). So

T1(F̄) = T1(F̃), T2(F̄) = T2(F̃).

By Theorem 4.5, we have seen c21(G) = T1(F̃), c2(G) = T2(F̃). Thus

c21(G) = T1(F̄), c2(G) = T2(F̄).

Finally, the computation of χ(G) is from the Noether formula 12χ(G) = c21(G) +
c2(G). □

4.5. Computation of initial invariants. In this section, we assume F is reduced
with ν(F) ≥ 0 and there is no (Bh,F)-exceptional curve of type H-J over X. We
will discuss the positivity of the following two invariants:

T1(B,F) := 2c21(F) +
3

2
KFBh + 2N2 − 2N(Bh)

2,

T2(B,F) := 2c2(F)− 2N2 + 2N(Bh)
2 − 3

2
s(Bv) + 2ℓ(F).

(4.12)

Proposition 4.20. T1(B,F) ≥ 0.

Proof. By Corollary 3.10,

T1(B,F) ≥ 3

2
NBh + 2N2 − 2N(Bh)

2 ≥ 0.

□

Proposition 4.21. T2(B,F) ≥ 0, if for any saddle-node q ∈ Bv \Bh, mq(Bv) = 1.
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Proof. We write s(Bv) = s′(Bv) + s′′(Bv) + s′′′(Bv), where

s′(B) =
∑
q ̸∈N

βq(Bv), s′′(B) =
∑

q∈N\N(Bh)

βq(Bv), s′′′(B) =
∑

q∈N(Bh)

βq(Bv).

By assumption and the definition of βq(Bv), we see βq(Bv) ≤ βq(F). So

(I) 2c2(F) + 2ℓ(F)− 3

2
s′(B) ≥ 2

∑
q ̸∈N

βq(F)− 3

2

∑
q ̸∈N

βq(F) =
∑
q ̸∈N

1

2
βq(F) ≥ 0,

and

(II)
∑

q∈N\N(Bh)

2βq(F)− 3

2
s′′(B) ≥

∑
q∈N\N(Bh)

1

2
βq(F) ≥ 0.

Recall N(Bh)
2 =

∑s
i=1(1−θi)

2M(Θi)
2, where Θ1, · · · ,Θs are maximal ( 12Bh,F)-

chains with θi = BhΘi/2. Next we will show

(III) 2
∑
q∈Θi

βq(F)− 2(1− θi)
2
∑
q∈Θi

βq(F)− 3

2

∑
q∈Θi

βq(Bv) ≥ 0.

This is true, just by Lemma 4.7:∑
q∈Θi

βq(Bv)

= 0, if θi = 0;

≤
∑

q∈Θi

βq(F), if θi = 1
2 .

.

Now from (I), (II) and (III), T2(B,F) ≥ 0 is clear. □

Proposition 4.22. If 2c21(F) ≥ c2(F), ℓ(F) = 0 and Bh ∩ N(Bh) ∩ SingF = ∅,
then 2T1(B,F) ≥ T2(B,F).

Proof. In this case,
2T1(B,F)− T2(B,F)

=(2c21(F)− c2(F)) + 3KFBh + 6N2 − 6N(Bh)
2 +

3

2
s(B)

≥3NBh + 6N2 − 6N(Bh)
2 +

3

2
· 2N(Bh)Bh, (Proposition 4.9)

≥3
[
(N +N(Bh))Bh + 2N2 − 2N(Bh)

2
]

≥0 (Corollary 3.9).
□

4.6. Computation of local invariants. In this section, we assume F is reduced
and there is no (Bh,F)-exceptional curve of type H-J over X. We will compute the
contribution of the Sj-singularity p ∈ Bh to α(p), s0(p), s(p), T1(p), T2(p), where

T1(p) = (1− l(p))
3m(p)− 4

2
+ 2α(p),

T2(p) = 2(1− l(p))2 − 2α(p) + 2s0(p)−
3

2
s(p).

(4.13)

Definition 4.23. We define

(4.14) ∆(tp) := tang(F , Bh)− tang(F ′, B′
h) = m1(m1 − 1 + l(p)) +

s∑
i=2

m2
i .

It is clear that ∆(tp) ≤ tp. If ∆(tp) = tp, then there is no more Sl,m-singularity
after p. So the blow-up process of Sl,m-singularities will continue until the equation
∆(tp) = tp holds.



20 JUN LU, XIN LU, SHENG-LI TAN, AND SHI XU

Lemma 4.24. If p ∈ Sl,m and p is not a saddle-node, then 2T1(p) ≥ T2(p).

Proof. In this case, s0(p) = 0. So

2T1(p)− T2(p) = 2

(
(1− l(p))

3m− 4

2
+ 2α(p)

)
−
(
2(1− l(p))2 − 2α(p)− 3

2
s(p)

)
= (1− l(p))(3m− 6 + 2l(p)) + 6l(p) +

3

2
s(p).

If l(p) = 1 or l(p) = 0 and m ≥ 2, 2T1(p) ≥ T2(p) is clear. Next we assume l(p) = 0
and m = 1. By Lemma 4.28,

T1(p) =
3tp − 1

2(tp + 1)
, T2(p) =

3
(
tp − 2

[
tp
2

])
+ 1

2(tp + 1)
.

So

2T1(p)− T2(p) =
3(tp − 1) + 6

[
tp
2

]
2(tp + 1)

≥ 0,

where tp ≥ 1. Then we are done. □

4.6.1. S1,m.

Proposition 4.25. Suppose p ∈ S1
m, Then l(p) = 1 and 0 ≤ α(p) < 1. Hence

(4.15) T1(p) = 2α(p), T2(p) = −2α(p) + 2s0(p)−
3

2
s(p).

Here
(1) T1(p) ≥ 0 and T1(p) = 0 unless p belongs to (e1) or (e2) or (e3).
(2) If λp = 0, T2(p) ≥ 1

2s0(p) ≥
1
2 , and if λp ̸= 0, 0 ≥ T2(p) > − 7

2βp(F) ≥ − 7
2 .

Proof. Clear. □

4.6.2. S0,m.

Proposition 4.26. Suppose p ∈ S0,m. Then l(p) = 0, 0 ≤ α(p) < 1 and

(4.16) T1(p) =
3

2
m(p)− 2 + 2α(p) ≥ 0, T2(p) = 2− 2α(p)− 3

2
s(p) ≥ 0.

Proof. The proof of T2(p) ≥ 0 is similar to the proof of T2(B,F) ≥ 0, see Proposi-
tion 4.21. Next we will show T1(p) > 0. If m(p) ≥ 2, then

T1(p) ≥
3

2
· 2− 2 = 1 > 0.

If m = 1, by Lemma 4.28,

T1(p) =
3tp − 1

2(tp + 1)
> 0,

where tp ≥ 1. So we are done. □

Definition 4.27. Suppose p ∈ Bh is a regular point of F , i.e., l(p) = 0. Let F
denote the separatrix through p. If F (resp. Bh) is locally defined by g = 0 (resp.
f = 0), then we define

ηp := Ip < f, g > .

Note that the definition of ηp does depend on the choice of f and g.
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Lemma 4.28 (S0,1). Suppose p ∈ S0,1. Then ∆(tp) = tp ≥ 1, r = ηp = tp + 1 and

β−
p =

tp
tp + 1

, θp = 0, s(p) =
2
[
tp
2

]
− tp + 1

tp + 1
.

Moreover, α(p) = tp
tp + 1

and

T1(p) =
3tp − 1

2(tp + 1)
, T2(p) =

3
(
tp − 2

[
tp
2

])
+ 1

2(tp + 1)
.

· · · · · ·
p qĒ1

Bh

Ē2

Ēr−1

Er sepa.
Ē3

σ

sepa.
B′

h

r

Figure 1. p ∈ S0
m, m = 1, E2

r = −1, Ē2
i = −2(i < r).

Proof. In this case, r = tp + 1, q1 = p and qi = Ei−1 ∩ Bi−1,h for i = 2, · · · , r, see
Figure 1. It is clear that Θp = Ē1 + · · ·+ Ēr−1 is a maxiaml ( 12Bh,F ′)-chain with
θp := 1

2ΘpB
′
h = 0. So

β−
p =

r−1∑
i=1

β(−λpi) =

r−1∑
i=1

1

i · (i+ 1)
= 1− 1

r
=

r − 1

r
=

tp
tp + 1

,

where pi = Ēi ∩ Ēi+1 for i = 1, · · · , r − 1. Let pr be another singularity of F ′ over
Er. Next we compute s(p).

By Lemma 4.7, βpi(B′
v) = 0 for i = 1, · · · , r − 1. So it suffices to compute

βpr (B′
v).
i) If p ∈ Bv, then Er ̸⊂ B′

v. So pr ∈ B′
v with mpr (B′

v) = 1 and

CS(F ′, B′
v, p

r) = −r.

Thus βpr (B′
v) = 0 if r is even and βpr (B′

v) =
1
r if r is odd.

ii) If p ̸∈ Bv and r is even, then Er ̸⊂ B′
v, which implies pr ̸∈ B′

v. So
βpr (B′

v) = 0.
iii) If p ̸∈ Bv and r is odd, then Er ⊂ B′

v, which implies pr ∈ B′
v with

mpr (B′
v) = 1 and

CS(F ′, B′
v, p

r) = −1

r
.

So βpr (B′
v) =

1
r .

Therefore,

s(p) = βpr (B′
v) =

(
2

[
r − 1

2

]
+ 1− (r − 1)

)
1

r
=

2
[
tp
2

]
− tp + 1

tp + 1
.

□

For any p ∈ S∗
0,m, it is clear that m ≥ 2. Next we consider a special case

S∗∗
0,m := {p ∈ S∗

0,m |m(p) = ηp}.
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Lemma 4.29 (S∗∗
0,m). Suppose p ∈ S∗∗

0,m. Then ∆(tp) = m(m− 1), r = 1 and

β−
p = 0, s(p) = m− 2

[m
2

]
.

Moreover, α(p) = 0 and

T1(p) =
3

2
m− 2, T2(p) = 2− 3

2
m+ 3

[m
2

]
.

Proof. r = 1 and β−
p = 0 are clear. Next we compute s(p).

(i) Suppose m is even. If p ∈ Bv, then mp(B) = m+1 is odd and E1 ⊂ B′
v. So

mq(B
′
v) = 2 and λq = −1 for q = E1 ∩SingF , which implies βq(B

′
v) = 0. If

p ̸∈ Bv, then E1 ̸⊂ B′
v. So q ̸∈ B′

v and βq(B
′
v) = 0. Thus in this case that

m is even, s(p) = βq(B
′
v) = 0.

(ii) Suppose m is odd. If p ∈ Bv (resp. p ̸∈ Bv), then E1 ̸⊂ B′
v (resp. E1 ⊂ B′

v).
They both imply mq(B

′
v) = 1 and λq = −1. So βq(B

′
v) = 1. Thus in this

case that m is odd, s(p) = βq(B
′
v) = 1.

□
4.7. Slope inequality. Using the notations in Section 4.4, by blowing up all SI

1,m-
singularities, it suffices to assume (X,F) is redcued satisfying

• there is no (Bh,F)-exceptional curves of type H-J,
• there is no SI

1,m-singularities,
• ℓ(F) = 0.

So N(Bh) ∩Bh ∩ SingF = ∅. We set

Fλ(·) :=
12− λ

12
T1(·)−

λ

12
T2(·).

By Proposition 4.22 and Lemma 4.24, we have the following claims.
Lemma 4.30. Let λ be a positive rational number with λ ≤ 4.

(i) If c21(F) ≥ λχ(F), then

FB,λ(F) =
12− λ

12
T1(B,F)− λ

12
T2(B,F) ≥ 0.

(ii) For any p ∈ Sl,m, if p is not a saddle-node, then

Fλ(p) =
12− λ

12
T1(p)−

λ

12
T2(p) ≥ 0.

Thus

c21(G)− λχ(G) = 2
(
c21(F)− λχ(F)

)
+

12− λ

8
KFBh + 2N2 − 2N(Bh)

2 +
1

8
s(Bv)

+
∑

p∈Sl,m

(12− λ)T1(p)− λT2(p)

12
+

λ

12
ℓ(G̃)

= Fλ(B,F) +
∑

p∈Sl,m

Fλ(p) +
λ

12
ℓ(G̃).

Theorem 4.31. Under the notations above. If c21(G) ≥ 4χ(G) and the branch locus
B of π misses the saddle-nodes, then c21(G) ≥ 4χ(G).
Proof. Under the assumption above, by Lemma 4.30,

F4(B,F) ≥ 0, F4(p) ≥ 0, for any p ∈ Sl,m.

So
c21(G)− 4χ(G) = F4(B,F) +

∑
p∈Sl,m

F4(p) +
1

3
ℓ(G̃) ≥ 0.

□
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Finally, we consider the case that (X,F) is a relatively minimal elliptic fibration
f : X −→ C. In this case, c21(F) = 0 but χ(F) > 0. Since c21(F) = κ(f) and
χ(F) = λ(f) are modular invariants of f , it suffices to assume f is semi-stable. So
by ([4], p.22), we have

KF = f∗[(f∗1OX)∨
]
= Kf

where deg(f∗1OX)∨ = χf = χ(F). So KF · Bh = χf · (Bh · F ), where F is the
general fibre of f . Note that, in this case, ℓ(F) = ℓ(G) = 0 and KF = Kf is nef,
which implies N = N(Bh) = 0. So by Lemma 4.30,

c21(G)− 4χ(G) = −8χ(F) +KFBh +
∑

p∈Sl,m

2T1(p)− T2(p)

3
≥ −8χ(F) +KFBh.

In fact, (Y,G) is a fibration f ′ of genus g, where g = g(F ′) for the general fibre F ′

of f ′. (We always call (Y,G) is a bielliptic fibration.) Consider the fibers of the
two fibrations, and we get a double cover of an elliptic curve with the ramification
divisor B. Here we can easily see degB = Bh · F . So by the Hurwitz’s Theorem,
we have

Bh · F = degB = 2g − 2− 2 · (2 · 1− 2) = 2g − 2.

So
KFBh = χf (2g − 2).

Since f is semi-stable, which implies χ(G) = χf , we have
c21(G)− 4χ(G) ≥ −8χ(F) + (2g − 2)χ(F) = (2g − 10)χ(F).

In particular, if g ≥ 5, then c21(G)− 4χ(G) ≥ 0, or say λ(G) ≥ 4.

Proposition 4.32. If (Y,G) is a bielliptic fibration with g ≥ 5, then λ(G) ≥ 4.

Note that this result above have proved in [2], where the author considered the
slope of bielliptic fibrations, in the sense of relative invariants.

5. Example of foliations with slope 12
7

Let X = P1 × P1, let f : X → P1 be one of the rulings with a fiber F0, and let
C0 be a section. Choose a proper coordinate (x, y) nearby p = (0, 0) ∈ C0∩F0 such
that C0 (resp., F0) is defined by y = 0 (resp., x = 0).

Example 5.1. Let F be a foliation on X locally generated by
ω = x2dy − ydx.

Let π : (Y,G) → (X,F) be the double cover locally defined by
z2 = y

(
y + x2k(1 + y2)

)
, (k ≥ 1).

Then we have

c21(G) = 2k, c2(G) = 12k, χ(G) = 7k

6
, λ(G) = 12

7
.
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Appendix A. Classification of S0,m-singularities for m ≤ 3

A.1. S0,1. We denote by Aη
0 the set of points p ∈ S0,1 with ηp = η. By Lemma

4.28, we see η ≥ 2 and we have the following table.

Table 2. S0,1.

∆(tp) α(p) s(p) T1(p) T2(p) tp = ∆(tp)?

Aη
0 η − 1

η − 1

η

2{η/2}
η

3η − 4

2η

2− 3{η/2}
η

Yes

Here we set {x} := x− [x].

Remark A.1. It is clear that ∆(tp) ≤ tp. That the equation ∆(tp) = tp holds
means there is no more Sl,m-singularities after p.

A.2. S0,2. In this case, we divide it into the following 4 cases:
Aη

1 . p is a node of Bh with ηp = η.
Aη,I

n . p is a singularity of Bh of type An(n ≥ 2) with η = ηp ≤ n− 1.
AII

2k. p is a singularity of Bh of type A2k(k ≥ 1) with η = 2k + 1.
Aη,II

2k−1. p is a singularity of Bh of type A2k−1(k ≥ 2) with η ≤ 2k.

Table 3. S0,2.

∆(tp) α(p) s(p) T1(p) T2(p) tp = ∆(tp)?

Aη
1 η

η − 2

4η − 4

η − 2 + 2{η/2}
η − 1

3− 4

η

2− 3{η/2}
η − 1

Yes

Aη,I
n 2η − 2 1− 2

η
0 3− 4

η

4

η
No

AII
2k 4k

2k − 1

2k + 1

2

2k + 1

6k − 1

2k + 1

1

2k + 1

Yes
Aη,II

4k−1 η + 4k − 2
2k − 1

2k

2{η/2}
η − 2k

3k − 1

k

1

k
− 3{η/2}

η − 2k

Aη,II
4k+1

p ̸∈ Bv

η + 4k
2k

2k + 1

1
2k+1 − 1−2{η/2}

η−2k−1 6k + 1

2k + 1

1
4k+2 + 3−6{η/2}

2(η−2k−1)

p ∈ Bv
1

2k + 1

1

4k + 2

Proposition A.2. Suppose p ∈ Aη,I
n . Then η = 2r for some r ≥ 2.

(i) If n = 2k − 1, then after p, there are k − r S∗∗
0,2-singularities.

(ii) If n = 2k, then after p, there are k − r − 1 S∗∗
0,2-singularities and one

A2
0-singularity.

A.3. S0,3. In this case, we divide it into the following cases:
(1) p is a singularity of Bh of type Dn(n ≥ 4).

Dη,I
n . the separatrix through p is not tangent to the component of Bh of type

An−3 at p.
Dη,II

n . the separatrix through p is tangent to the component of Bh of type
An−3 at p with η ≤ n− 3.
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DIII
2k+3. the separatrix through p is tangent to the component of Bh of type

An−3 at p with η = 2k + 2.
Dη,III

2k+2 . the separatrix through p is tangent to the component of Bh of type
An−3 at p with η ≥ 2k + 1.

(2) p is a singularity of Bh of type E6.
EI

6 . The separatrix through p is not tangent to Bh at p with η = 3.
EII

6 . The separatrix through p is tangent to Bh at p with η = 4.
(3) p is a singularity of Bh of type E7.

EI
7 . The separatrix through p is not tangent to Bh at p with η = 3.

Eη,II
7 . The separatrix through p is tangent to Bh at p with η ≥ 5.

(4) p is a singularity of Bh of type E8.
EI

8 . The separatrix through p is not tangent to Bh at p with η = 3.
EII

8 . The separatrix through p is tangent to Bh at p with η = 5.

Table 4. S0,3.

∆(tp) α(p) s(p) T1(p) T2(p) tp = ∆(tp)?

Dη,I
n η + 3 0

2{η/2}
η − 2

5

2
2− 3{η/2}

η − 2
No

Dη,II
n 2η

η − 3

4η − 4
1

3η − 4

η − 1

1

η − 1
No

DIII
2k+3 4k + 4

2k − 1

4(2k + 1)

2k − 1

2k + 1

6k + 2

2k + 1

4

2k + 1
Yes

Dη,III
4k+2 η + 4k + 1

2k − 1

8k
1− 1− 2{η/2}

η − 2k − 1
3− 1

4k

1

4k
+

3(1− 2{η/2})
2(η − 2k − 1)

Yes

Dη,III
4k η + 4k − 1

k − 1

2(2k − 1)

2k − 2

2k − 1
+

2{η/2}
η − 2k

6k + 2

2k + 1

2

2k − 1
− 3{η/2}

η − 2k
Yes

EI
6 , E

I
7 , E

I
8 6 0 1

5

2

1

2
No

EII
6 9

1

4
0 3

3

2
Yes

Eη,II
7 η + 6

1

3

2

3
− 1− 2{η/2}

η − 1

19

6

1

3
+

3(1− 2{η/2})
2(η − 1)

Yes

EII
8 12

2

5

3

5

33

10

3

10
Yes

Proposition A.3. Suppose p ∈ Dη,I
n .

(i) If n = 2k + 2, then after p, there are k − 1 S∗∗
0,2-singularities.

(ii) If n = 2k + 3, then after p, there are k − 1 S∗∗
0,2-singularities and one

A2
0-singularity.

Proposition A.4. Suppose p ∈ Dη,II
n . Then η = 2r + 1 ≤ n− 3.

(i) If n = 2k + 2, then after p, there are k − r S∗∗
0,2-singularities.

(ii) If n = 2k + 3, then after p, there are k − r S∗∗
0,2-singularities and one

A2
0-singularity.

Proposition A.5. For p ∈ EI
i (i = 6, 7, 8), p is just one S∗∗

0,3-singularity. If p ∈ EI
6

(resp. EI
7 , EI

8), then after p, there is a singularity of type A3
0 (resp. A3

1, AII
2 ).
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